Spectrum of a non-self-adjoint operator associated with the periodic heat equation

نویسنده

  • Marina Chugunova
چکیده

We study the spectrum of the linear operator L = −∂θ − ǫ∂θ(sin θ∂θ) subject to the periodic boundary conditions on θ ∈ [−π, π]. We prove that the operator is closed in L2([−π, π]) with the domain in H per([−π, π]) for |ǫ| < 2, its spectrum consists of an infinite sequence of isolated eigenvalues and the set of corresponding eigenfunctions is complete. By using numerical approximations of eigenvalues and eigenfunctions, we show that all eigenvalues are simple, located on the imaginary axis and the angle between two subsequent eigenfunctions tends to zero for larger eigenvalues. As a result, the complete set of linearly independent eigenfunctions does not form a basis in H per([−π, π]).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Wave Equation in Non-classic Cases: Non-self Adjoint with Non-local and Non-periodic Boundary Conditions

In this paper has been studied the wave equation in some non-classic cases. In the  rst case boundary conditions are non-local and non-periodic. At that case the associated spectral problem is a self-adjoint problem and consequently the eigenvalues are real. But the second case the associated spectral problem is non-self-adjoint and consequently the eigenvalues are complex numbers,in which two ...

متن کامل

An analytic solution for a non-local initial-boundary value problem including a partial differential equation with variable coefficients

‎This paper considers a non-local initial-boundary value problem containing a first order partial differential equation with variable coefficients‎. ‎At first‎, ‎the non-self-adjoint spectral problem is derived‎. ‎Then its adjoint problem is calculated‎. ‎After that‎, ‎for the adjoint problem the associated eigenvalues and the subsequent eigenfunctions are determined‎. ‎Finally the convergence ...

متن کامل

Inverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions

In this manuscript, we consider the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. We prove by defining a new Hilbert space and using spectral data of a kind, the potential function can be uniquely determined by a set of value of eigenfunctions at an interior point and p...

متن کامل

On spectrum of a periodic operator with a small localized perturbation

We study the spectrum of a periodic self-adjoint operator on the axis perturbed by a small localized nonself-adjoint operator. It is shown that the continuous spectrum is independent of the perturbation, the residual spectrum is empty, and the point spectrum has no finite accumulation points. We address the existence of the embedded eigenvalues. We establish the necessary and sufficient conditi...

متن کامل

The Singularly Continuous Spectrum and Non-closed Invariant Subspaces

Let A be a bounded self-adjoint operator on a separable Hilbert space H and H0 ⊂ H a closed invariant subspace of A. Assuming that H0 is of codimension 1, we study the variation of the invariant subspace H0 under bounded self-adjoint perturbations V of A that are off-diagonal with respect to the decomposition H = H0 ⊕H1. In particular, we prove the existence of a oneparameter family of dense no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008